An insulin-degrading enzyme inhibitor decreases amylin degradation, increases amylin-induced cytotoxicity, and increases amyloid formation in insulinoma cell cultures.
نویسندگان
چکیده
Amylin (islet amyloid polypeptide) is the chief component of the islet amyloid found in type 2 diabetes, and amylin fibril precursors may be cytotoxic to pancreatic beta-cells. Little is known about the prevention of amylin aggregation. We investigated the role of insulin-degrading enzyme (IDE) in amylin degradation, amyloid deposition, and cytotoxicity in RIN-m5F insulinoma cells. Human (125)I-labeled amylin degradation was inhibited by 46 and 65% with the addition of 100 nmol/l human amylin or insulin, respectively. (125)I-labeled insulin degradation was inhibited with 100 nmol/l human amylin, rat amylin, and insulin (by 50, 50, and 73%, respectively). The IDE inhibitor bacitracin inhibited amylin degradation by 78% and insulin degradation by 100%. Amyloid staining by Congo red fluorescence was detectable at 100 nmol/l amylin and was pronounced at 1,000 nmol/l amylin treatment for 48 h. Bacitracin treatment markedly increased staining at all amylin concentrations. Bacitracin with amylin caused a dramatic decrease in cell viability compared with amylin alone (68 and 25%, respectively, at 10 nmol/l amylin). In summary, RIN-m5F cells degraded both amylin and insulin through a common proteolytic pathway. IDE inhibition by bacitracin impaired amylin degradation, increased amyloid formation, and increased amylin-induced cytotoxicity, suggesting a role for IDE in amylin clearance and the prevention of amylin aggregation.
منابع مشابه
Pore formation by the cytotoxic islet amyloid peptide amylin.
Amylin is a 37-amino acid cytotoxic constituent of amyloid deposits found in the islets of Langerhans of patients with type II diabetes. Extracellular accumulation of this peptide results in damage to insulin-producing beta cell membranes and cell death. We report here that at cytotoxic concentrations, amylin forms voltage-dependent, relatively nonselective, ion-permeable channels in planar pho...
متن کاملBenzbromarone, Quercetin, and Folic Acid Inhibit Amylin Aggregation
Human Amylin, or islet amyloid polypeptide (hIAPP), is a small hormone secreted by pancreatic β-cells that forms aggregates under insulin deficiency metabolic conditions, and it constitutes a pathological hallmark of type II diabetes mellitus. In type II diabetes patients, amylin is abnormally increased, self-assembled into amyloid aggregates, and ultimately contributes to the apoptotic death o...
متن کاملDevelopment of proteolytically stable N-methylated peptide inhibitors of aggregation of the amylin peptide implicated in type 2 diabetes.
Islet amyloid polypeptide, also known as amylin, is the main component of the amyloid deposits present in approximately 90% of people with type 2 diabetes mellitus (T2DM). In this disease, amylin aggregates into multimeric β-pleated sheet structures which cause damage to pancreatic islet β-cells. Inhibitors of early-stage amylin aggregation could therefore provide a disease-modifying treatment ...
متن کاملTwo-dimensional infrared spectroscopy reveals the complex behavior of an amyloid fibril inhibitor
Amyloid formation has been implicated in the pathology of over 20 human diseases, but the rational design of amyloid inhibitors is hampered by a lack of structural information about amyloid-inhibitor complexes. We use isotope labelling and two-dimensional infrared spectroscopy to obtain a residue-specific structure for the complex of human amylin (the peptide responsible for islet amyloid forma...
متن کاملNovel insights into amylin aggregation
Amylin is a peptide that aggregates into species that are toxic to pancreatic beta cells, leading to type II diabetes. This study has for the first time quantified amylin association and dissociation kinetics (association constant (ka ) = 28.7 ± 5.1 L mol-1 s-1 and dissociation constant (kd ) = 2.8 ± 0.6 ×10-4 s-1) using surface plasmon resonance (SPR). Thus far, techniques used for the sizing ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Diabetes
دوره 52 9 شماره
صفحات -
تاریخ انتشار 2003